Documentation of wound surface area and fluorescence bacteria characteristics using a point-of-care, hand-held imaging device

Rose Raizman, RN-EC, MSc
Scarborough Rouge Hospital System, Toronto, ON, Canada

INTRODUCTION
- Wound surface area reduction is used as a predictor of healability and an indication of the care protocol efficacy.
- The variability, of up to 40%, in standard length x width estimation of wound surface area is unacceptable on a measurement on which care decisions are being based.
- Digital planimetry tools have been demonstrated to be more accurate and consistent than conventional methods in documenting the progress of a wound through the care continuum.
- Here we present the use of a hand-held, non-contact wound imaging device that includes fluorescence imaging and documentation of bacteria and software that estimates and documents the area of a wound, using a proprietary algorithm or manual trace functionality.

METHODS
- 25 wounds were imaged using a non-contact, hand-held device at the point-of-care.
- Wound surface area was measured and documented for up to 6 months.
- Fluorescence imaging of the wounds was also performed to assess presence of bacteria using the same handheld imaging device.

WOUND IMAGING

RESULTS

Inaccuracy of SoC Measurement

The standard of care estimation of wound area using length x width measurement, over estimated the area of all wounds in this study.

The irregular wound border of this 90 year old male patient with a venous leg ulcer on his left calf would have been overestimated by 46.3% with traditional estimation.

Case 1: Healing Trajectory

The care paradigm of this 72 year old venous leg ulcer patient included wound cleansing, sharp debridement, and compression dressing. The wound decreased in size by 30% in just 8 days, meaning that it was projected to progress through the continuum of healing without complication.

Case 2: Non-Healing Trajectory

The care paradigm for this 74 year old venous leg ulcer patient included debridement, infection management with antimicrobial cleansing and compression bandages. The wound area failed to decrease by 30% in 4 weeks, and therefore the care paradigm was reassessed. Tissue samples obtained at 91 and 140 days confirmed polymicrobial presence as indicated by the presence of red fluorescence in the FL-images.

The lack of progress of the wound between 62 – 93 day time points again prompted for a reassessment of the care paradigm, one which rapidly decreased the size of the wound over a two week period.

The wound increased in size dramatically at 140 days, again prompting a change in care including sampling of microbiological load. The wound again experienced a steep decrease in wound area.

CONCLUSIONS

Accurate and convenient wound area measurement in a point-of-care, hand-held imaging device is helpful in documenting wounds and predicting their healability in an objective, standardized manner.

REFERENCES

1. Gethin 2006, Wounds
2. Kho et al. 2016, Wounds
3. Rennie et al. 2017, J Wound Care
4. DaCosta et al. 2015 PLoS ONE

DISCLAIMER

This work has been made possible by sponsorship from MolecuLight, Inc.